GCE Examinations

Advanced Subsidiary / Advanced Level

Decision Mathematics

Module D2

Paper C

MARKING GUIDE

Abstract

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong
© Solomon Press

D2 Paper C - Marking Guide

1. (a)

add $A D-17, A E-18$
M1 A1
(b) $\quad A B$ (5), $B C$ (8), $C D$ (10), $D E$ (7), $E A$ (18) M1
tour: $A B C D E A$
upper bound $=5+8+10+7+18=48$ miles
A1
(c) actual tour is $A B C D E B A$ as $E A$ is not in original network

M1 A1
2. (a) adding 4 to all entries to make them positive gives

		B		
		I	II	III
A	I	3	8	1
	II	1	11	5
	III	9	2	3

new value of game $v=V+4$
(b) let B play strategies I, II and III with proportions p_{1}, p_{2} and p_{3}
let $x_{1}=\frac{p_{1}}{v}, x_{2}=\frac{p_{2}}{v}, x_{3}=\frac{p_{3}}{v}$
(c) $p_{1}+p_{2}+p_{3}=1$
dividing by v gives $\quad x_{1}+x_{2}+x_{3}=\frac{1}{v}$
we wish to minimise $v \therefore$ maximise $\frac{1}{v}$
objective function is maximise $P=x_{1}+x_{2}+x_{3}$
A1
(d) from A I, $\quad 3 p_{1}+8 p_{2}+p_{3} \leq v$
from A II, $\quad p_{1}+11 p_{2}+5 p_{3} \leq v$
from A III, $\quad 9 p_{1}+2 p_{2}+3 p_{3} \leq v$
dividing by v gives the constraints

$$
\begin{aligned}
& 3 x_{1}+8 x_{2}+x_{3} \leq 1 \\
& x_{1}+11 x_{2}+5 x_{3} \leq 1 \\
& 9 x_{1}+2 x_{2}+3 x_{3} \leq 1
\end{aligned}
$$

A1
(8)
also

$$
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
$$

3.

Stage	State	Action	Destination	Value
1	I	IL	L	19*
	J	JL	L	18*
	K	KL	L	26*
2	E	$\begin{aligned} & \hline \hline E I \\ & E J \end{aligned}$	$\begin{aligned} & \hline \hline I \\ & J \end{aligned}$	$\begin{aligned} & \hline \max (35,19)=35 \\ & \max (29,18)=29^{*} \end{aligned}$
	F	$\begin{aligned} & F I \\ & F J \\ & F K \end{aligned}$	$\begin{aligned} & I \\ & J \\ & K \end{aligned}$	$\begin{aligned} & \max (17,19)=19^{*} \\ & \max (24,18)=24 \\ & \max (15,26)=26 \end{aligned}$
	G	$\begin{gathered} G I \\ G J \\ G K \end{gathered}$	$\begin{aligned} & I \\ & J \\ & K \end{aligned}$	$\begin{aligned} & \max (18,19)=19^{*} \\ & \max (26,18)=26 \\ & \max (14,26)=26 \end{aligned}$
	H	$\begin{aligned} & H J \\ & H K \\ & \hline \end{aligned}$	$\begin{aligned} & \hline J \\ & K \\ & \hline \end{aligned}$	$\begin{aligned} \max (17,18) & =18^{*} \\ \max (39,26) & =39 \end{aligned}$
3	B	$\begin{aligned} & \hline B E \\ & B F \\ & B G \\ & \hline \end{aligned}$	$\begin{aligned} & \hline E \\ & F \\ & G \end{aligned}$	$\begin{aligned} & \max (21,29)=29 \\ & \max (25,19)=25^{*} \\ & \max (28,19)=28 \end{aligned}$
	C	$\begin{aligned} & C E \\ & C F \\ & C G \\ & C H \end{aligned}$	$\begin{aligned} & \hline E \\ & F \\ & G \\ & H \end{aligned}$	$\begin{aligned} & \max (28,29)=29 \\ & \max (30,19)=30 \\ & \max (40,19)=40 \\ & \max (28,18)=28^{*} \end{aligned}$
	D	$\begin{aligned} & D F \\ & D G \\ & D H \end{aligned}$	$\begin{aligned} & \hline F \\ & G \\ & H \end{aligned}$	$\begin{aligned} & \max (38,19)=38 \\ & \max (24,19)=24^{*} \\ & \max (35,18)=35 \end{aligned}$
4	A	$\begin{aligned} & \hline A B \\ & A C \\ & A D \end{aligned}$	$\begin{aligned} & \hline B \\ & C \\ & D \\ & D \end{aligned}$	$\begin{aligned} & \hline \max (19,25)=25 \\ & \max (12,28)=28 \\ & \max (7,24)=24^{*} \end{aligned}$

giving route $A D G I L$
M1 A1
4.

	W_{1}	W_{2}	W_{3}	Available
S_{1}	20	10		30
S_{2}		5	20	25
S_{3}			10	10
Required	20	15	30	

taking $R_{1}=0, \quad R_{1}+K_{1}=12 \quad \therefore K_{1}=12$
$R_{1}+K_{2}=11 \quad \therefore K_{2}=11$
$R_{2}+K_{2}=5 \quad \therefore R_{2}=-6$
$R_{2}+K_{3}=10 \quad \therefore K_{3}=16$
$R_{3}+K_{3}=8 \quad \therefore R_{3}=-8$

	$K_{1}=12$	$K_{2}=11$	$K_{3}=16$
$R_{1}=0$	(0)	(0)	17
$R_{2}={ }^{-6}$	7	(0)	(0)
$R_{3}=-8$	5	6	(0)

improvement indices, $I_{i j}=C_{i j}-R_{i}-K_{j}$
$\therefore I_{13}=17-0-16=1$
$I_{21}=7-\left({ }^{-} 6\right)-12=1$
$I_{31}=5-(-8)-12=1$

$$
I_{32}=6-(-8)-11=3
$$

pattern is optimal as there are no negative improvement indices
optimal pattern:
20 rolls from S_{1} to $W_{1}, 10$ rolls from S_{1} to $W_{2}, 5$ rolls from S_{2} to W_{2}, 20 rolls from S_{2} to $W_{3}, 10$ rolls from S_{3} to W_{3}
total cost $=(20 \times 12)+(10 \times 11)+(5 \times 5)+(20 \times 10)+(10 \times 8)=£ 655$
M1 A1
5. need to maximise so subtract all values from 9 giving

	row min.			
2	1	4	3	1
3	0	3	4	0
0	1	4	2	0
2	2	3	3	2

reducing rows gives:
$\begin{array}{llll}1 & 0 & 3 & 2\end{array}$
$\begin{array}{llll}3 & 0 & 3 & 4\end{array}$
$\begin{array}{llll}0 & 1 & 4 & 2\end{array}$
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$
col min. $\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$
reducing columns gives:

(N.B. a different choice of lines will

A1
lead to the same final assignment)
3 lines required to cover all zeros, apply algorithm
B1

M1 A1

4 lines are required to cover all zeros so allocation is possible
B1
stage $1-C$
stage $2-B$
stage $3-D$
M1 A1
stage $4-A$
total number of days $=9+9+6+6=30$ days
A1
6. (a) (i) strategy III dominates II since $9 \geq 7,{ }^{-} 4 \geq^{-} 4,8 \geq^{-} 1$ player A can ignore strategy II
(ii) strategy III dominates I since ${ }^{-} 2 \leq 3,{ }^{-} 1 \leq 7,8 \leq 9$ player B can ignore strategy I
(b) reduced table:

		B	
		II	III
A	I	5	-2
	III	-4	8

(i) let A play strategies I and III with proportions p and $(1-p)$ expected payoff to A against each of B 's strategies:
$\begin{array}{ll}B \text { II } & 5 p-4(1-p)=9 p-4 \\ B \text { III } & -2 p+8(1-p)=8-10 p\end{array}$
for optimal strategy $9 p-4=8-10 p$

$$
\therefore 19 p=12, p=\frac{12}{19}
$$

$\therefore A$ should play I $\frac{12}{19}$ of time, II never and III $\frac{7}{19}$ of time
M1 A1
(i) let B play strategies II and III with proportions q and $(1-q)$ expected loss to B against each of A 's strategies:
A I $\quad 5 q-2(1-q)=7 q-2$
A III $-4 q+8(1-q)=8-12 q$
M1 A1
for optimal strategy $7 q-2=8-12 q$

$$
\therefore 19 q=10, q=\frac{10}{19}
$$

$\therefore B$ should play I never, II $\frac{10}{19}$ of time and III $\frac{9}{19}$ of time
(c) value of game $=\left(9 \times \frac{12}{19}\right)-4=1 \frac{13}{19}$
7.
(a) e.g. starting at A

order:	1	5	4	3		6	7
2							
	A	B	C	D	E	F	G
A	-	63	75	57	81	102	52
B	63	-	48	83	32	49	61
C	75	48	-	41	72	65	109
D	57	83	41	-	49	79	70
E	81	32	72	49	-	51	88
F	102	49	65	79	51	-	90
G	52	61	109	70	88	90	-

M1 A2

A1

M1 A1
(b) use $F G$ saving $52+57+41+48+49-90=157$
use $E F$ saving $32+49-51=30$
new upper bound $=558-157-30=371 \mathrm{~km}$
(c)

A1

M1 A1

$$
=(57+41+48+32+49)+52+61=340 \mathrm{~km}
$$

(d) e.g. starting at A

order:	1		4	3	5	6	2
	A	B	C	D	E	F	G
A	-	63	75	57	81	102	52
B	63	-	48	83	32	49	61
C	75	48	-	41	72	65	109
D	57	83	41	-	49	79	70
E	81	32	72	49	-	51	88
F	102	49	65	79	51	-	90
G	52	61	109	70	88	90	-
$G \stackrel{52}{ }$	A	41	49	$E-$	$-F$		

lower bound $=$ weight of MST + two edges of least weight from B

$$
=(52+57+49+51+41)+32+48=330 \mathrm{~km}
$$

(e) 340 km , from (c) is better as it is higher

Performance Record - D2 Paper C

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	$\begin{aligned} & \begin{array}{l} \text { nearest } \\ \text { neighbour } \end{array} \end{aligned}$	game, formulate lin. prog.	$\begin{aligned} & \text { dynamic } \\ & \text { prog., } \\ & \text { minimax } \end{aligned}$	transport., $\mathrm{n}-\mathrm{w}$ corner, improv. indices	allocation, maximum	$\begin{aligned} & \text { game, } \\ & \text { dominance } \end{aligned}$	TSP, shortcut	
Marks	6	8	9	11	11	13	17	75
Student								

